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1 Introduction.

In response to Russia�s military operations in Ukraine, G7 countries and other allies

(�the Alliance�) have imposed a cap on the price at which Russian �rms can sell the oil they

supply using key Alliance inputs (e.g., shipping and insurance).1 The price cap is intended

to reduce the (tax) revenue that Russia has available to �nance its operations in Ukraine2

without causing the sharp increase in the world price of oil that would likely arise if the

Alliance were to withhold its inputs from Russian oil suppliers altogether.3

Using price caps to reduce the (tax) revenue that accrues to a sanctioned nation is a

relatively novel undertaking,4 and so has received little formal analysis to date. The primary

analysis of this issue has (appropriately) examined the e¤ects of price caps on non-renewable

resources. Johnson, Rachel, and Wolfram et al. (2023a) (hereinafter JRW) demonstrate

that an exogenous price reduction often encourages a producer to increase its supply of a

non-renewable resource. A lower price reduces the value of the remaining reserves, thereby

enhancing incentives for current extraction and sale of the resource.5 It follows that the

imposition of a binding cap on the price at which a supplier can sell a non-renewable product

can induce the �rm to increase its current supply of the product.

The present research is intended to complement JRW�s important work by examining the

e¤ects of imposing a price ceiling on a product supplied by a �rogue�supplier (R), even if

the product is not a non-renewable resource. Historically, restrictions have been imposed on

many di¤erent types of exports. For example, the U.S. has restricted the �ows of a broad

spectrum of goods and services to and from many countries, including Cuba, Iran, Libya,

1See Wolfram et al. (2022), Baumeister (2023), Horwich (2023), and Johnson et al. (2023a) for details.
2Johnson et al. (2023a, p. 3) observe that �The price cap has two main goals. First, it is an integral part of
a broader sanctions package designed to reduce Russia�s foreign exchange revenues and reduce its capacity
to wage war in Ukraine. ... The second goal of the price cap was to make it possible for Russian oil to stay
on the world market.�
3�Without the price cap policy, many analysts predicted that the EU embargo and services ban would
prevent Russia from exporting 1-2 mbpd of oil, potentially increasing oil prices signi�cantly and, in turn,
adding to global in�ationary pressures�(Wolfram et al., 2022, pp. 4-5). �[I]f Russian oil doesn�t get to the
market somewhere, then there�s a global shortfall that would have signi�cant rami�cations for the price�
(Horwich, 2023, p. 1).
4Neil Mehrotra, one of the architects of the cap on the price at which Russian oil can be sold, observes that
�The price cap is an entirely novel e¤ort. Typically, U.S. sanctions have been just outright prohibitions
on certain types of business with certain entities. The price cap is novel in that we are trying to facilitate
trade, but only under certain terms. ... I think this is de�nitely a new front in the tools of economic
statecraft�(Horwich, 2023, p. 5). Johnson et al. (2023a, p. 16) observe that �The price cap on Russian oil
re�ects a novel approach to sanctions and the world is just beginning to understand its impacts on Russian
oil revenues, geopolitical alignments, and oil trade.�
5Also see Johnson et al. (2023b).
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North Korea, and South Africa.6 In principle, corresponding future restrictions might take

the form of price restrictions rather than quantity restrictions. Therefore, it is important to

understand the likely e¤ects of price restrictions on a wide variety of products.

If all prices were exogenous in our static model, a binding ceiling on the price at which

R can sell the product it supplies using an Alliance input would induce R to reduce its

supply of this product.7 Thus, there is no natural tendency for a binding price cap to induce

expanded supply in our model, in contrast to JRW�s model. Nevertheless, when prices are

endogenous in our model,8 the imposition of a price cap can induce R to increase its supply of

the product, and thereby reduce the (unrestricted, endogenous) world price of the product.9

These potentially counterintuitive �ndings arise because, in the presence of a binding price

cap, an increase in R�s output no longer reduces the price at which some of R�s output is

sold. This reduced exposure to the key deterrent to output expansion induces R to increase

its output.10

Even as R�s increased output reduces the world price, it can increase R�s revenue. Con-

sequently, a price cap can have two e¤ects that di¤er from the e¤ects typically recognized

by policymakers. First, a price cap can reduce, not increase, the world price of the product

in question. Second, a price cap on a portion of a sanctioned supplier�s output can increase,

not reduce, the supplier�s revenue. These �ndings imply that the optimal design of a price

cap entails important subtleties even in the absence of the intertemporal considerations in

JRW�s analysis.

We show that the subtle qualitative e¤ects we identify can be economically signi�cant un-

der arguably plausible conditions. Speci�cally, modest reductions in the price cap below the

prevailing world price of the product can cause R�s revenue to increase substantially. Conse-

quently, relatively stringent price caps can be required to reduce R�s revenue. Furthermore,

even stringent price caps can cause the world price of the product to decline.

We also characterize the price cap (p�) that maximizes the di¤erence between consumer

6See U.S. Senate and House of Representatives (1986) and U.S. Government Accountability O¢ ce (1987,
1988, 2007, 2010, 2015).
7See Sappington and Turner (2023) for a formal proof of this conclusion.
8The uncapped equilibrium price of the product is a¤ected by the strategic output decisions of industry
suppliers in our model.
9The unrestricted world price is the price at which suppliers other than R sell the product. It is also the
price at which R sells the output that it produces without using an Alliance input.
10In this respect, a price cap functions much like forward contracting (i.e., arranging to deliver future output
at a �xed price that does not vary with the (spot) price that ultimately prevails). Allaz and Vila (1993)
demonstrate that forward contracting can enhance incentives for output expansion by Cournot competitors.
It can be shown that a corresponding e¤ect arises in our model even if R is a monopolist.
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surplus and a multiple (d > 0) of R�s revenue. We demonstrate that the welfare-maximizing

price cap often is well below the uncapped price of the product. We also demonstrate that

the optimal price cap can increase welfare substantially under arguably plausible conditions.

In addition, we show that welfare under p� is higher than when the Alliance refuses to supply

its input to R if: (i) d is su¢ ciently small; or (ii) access to the Alliance input reduces R�s

marginal cost su¢ ciently. In contrast, such a refusal can maximize welfare if conditions (i)

and (ii) do not hold.

Our analysis and JRW�s analysis are related to Sturm (2022a)�s analysis of the design

of tari¤s and taxes that maximize the welfare of a home country for any level of welfare

reduction imposed on a sanctioned country.11 However, our work di¤ers substantially from

Sturm�s analysis in part because the suppliers in Sturm�s model are price takers.12 Conse-

quently, the key considerations that underlie our primary �ndings do not arise in Sturm�s

model.13

The analysis proceeds as follows. Section 2 describes our model. Section 3 identi�es

conditions under which a binding price cap increases R�s revenue and reduces the uncapped

price of the sanctioned product. Section 4 examines the welfare-maximizing choice of a price

cap. Section 5 summarizes our key �ndings and suggests directions for future research. The

Appendix provides the proofs of all formal conclusions in the text.

11We share JRW�s focus on the e¤ects of a price cap rather than the e¤ects of tari¤s and taxes. However, we
abstract from the stochastic prices, risk aversion, and degree of intertemporal elasticity of substitution that
underlie JRW�s key �ndings. We focus on the strategic interaction between the sanctioned supplier and
a non-sanctioned supplier, both of which have market power. JRW explain that they �do not model the
strategic interaction between Russia and other global producers, [although their] model features parameters
that re�ect the responsiveness of other producers, such as OPEC, to shocks originating from Russia or
elsewhere�(p. 4) In contrast to JRW, we also examine the design of a welfare-maximizing price cap.

12Wachtmeister et al. (2022) also abstract from strategic oligopolistic interactions among suppliers. The
authors compare the e¤ects of price restrictions and quantity restrictions after estimating prevailing demand
and supply functions. They �nd that price discounts often are better able than quantity restrictions to
reduce the pro�ts of Russian oil producers without reducing unduly the surplus secured by oil consumers.
Ehrhart and Schlecht (2022) also do not model formally the strategic interactions among industry suppliers.
The authors identify conditions under which a sanctioned supplier will accept the price cap imposed by
buyers of its product.

13Furthermore, we examine the e¤ects of a price cap on some of R�s output, rather than a tax on all of
R�s output. Sturm (2022b) extends the analysis in Sturm (2022a) in part to examine the design of tari¤s
that maximize the di¤erence between the welfare of the home country and a multiple of the welfare of
the sanctioned country. Sturm (2022b) also considers retaliatory tari¤s by the sanctioned country. Sturm
(2023) extends his earlier work to focus on how the presence of non-sanctioning countries that can either
purchase the sanctioned product or supply substitute products a¤ects the optimal design of sanctions.
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2 The Model.

We consider a setting in which R and a rival producer supply a homogeneous product.

Aggregate (inverse) demand for the product is P (Q) = a� bQ, where a > 0 and b > 0 are
parameters, Q is aggregate output, and P (�) denotes price.

The rival�s cost of producing q units of output is C(q) = c q + k
2
q2, where c > 0 and

k > 0 are parameters. R produces qA � 0 units of output using an input (e.g., shipping

and/or insurance) supplied by an (Alliance) input owner (�A�). R also produces qN � 0

units of output without employing this input.14 R�s corresponding total cost is

CR(qA; qN) = cA qA +
kA
2
[ qA ]

2 + cN qN +
kN
2
[ qN ]

2 +
kR

2
[ qA + qN ]

2 . (1)

The parameter kR > 0 scales the nonlinear component of R�s �manufacturing� costs, i.e.,

costs that do not vary with the presence or absence of A�s input. kA and kN (� kA) are

parameters that scale the nonlinear component of R�s �transactions�costs, i.e., costs that

can vary according to whether R�s output is supplied using A�s input. cA and cN (� cA)

scale the linear component of R�s costs that can vary according to whether R employs A�s

input.15

To avoid relatively uninteresting outcomes in which some equilibrium output is 0 in the

absence of a stringent price cap, we assume that market demand is su¢ ciently pronounced

relative to cost, i.e., a > max fc; cN g. We also assume that costs are su¢ ciently nonlinear,
i.e.,

D � [ 2 b+ k ]
�
kN
�
kA + k

R
�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ] > 0 , and (2)

kA [ (a� cN) (2 b+ k)� b (a� c) ] > [ cN � cA ]
�
3 b2 + 2 b

�
k + kR

�
+ k kR

�
. (3)

The activity in our static model proceeds as follows. First, A speci�es the maximum

price, p, at which R can sell the output it produces using A�s input. Then R chooses qA and

qN , and the rival chooses q (simultaneously and noncooperatively). The resulting output,

Q = qA + qN + q, gives rise to a market-clearing equilibrium price, P (Q). Finally, R sells

qN and the rival sells q at price P (Q). R also sells qA at this price if p > P (Q). Otherwise,

R sells qA at price p.

R�s formal problem is:

Maximize
qA� 0; qN � 0

PA(qA + qN + q ) qA + [ a� b (qA + qN + q ) ] qN � CR(qA; qN)

14R can procure a substitute, but potentially more costly, input from a supplier other than A.
15For expositional ease, we abstract from any �xed costs of production.
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where PA(Q) =

8><>:
�p if P (Q) � �p

P (Q) if P (Q) < �p .
(4)

The rival�s problem is:

Maximize
q� 0

[ a� b (qA + qN + q ) ] q � C(q) . (5)

3 A Price Cap Can Reduce P (Q) and Increase R�s Revenue.

Proposition 1 examines the relationships among the level of the price cap (p ), the equi-

librium unrestricted price of the product (P (Q)), and R�s output using A�s input (qA).

Proposition 1. There exist values of the price cap, 0 < p1 < p2 < p3, such that, in

equilibrium, qA = 0 if and only if p � p1. Furthermore: (i) p < P (Q) if p � p2; (ii)

p = P (Q) if p 2 (p2; p3 ]; and (iii) p > P (Q) if p > p3.
16

Proposition 1 reports that for the highest values of p (i.e., for p > p3), the cap does

not bind, so it has no impact on equilibrium outcomes. As p declines below p3,
17 the price

cap binds and the equilibrium uncapped price declines at the same rate that p declines.

Consequently, P (Q) = p over an entire range of values, p 2 (p2; p3 ]. As p declines further
(i.e., for p 2 ( �p1; �p2 ] ), p falls below P (Q), but R continues to supply qA > 0. For the

lowest values of p (i.e., for p � �p1), the price cap remains below P (Q), and the particularly

stringent price cap induces R to set qA = 0.

To explain the presence of an entire range of price caps for which the capped and uncapped

prices coincide, it is helpful to determine how equilibrium outputs change as the price cap

declines below the level at which it �rst binds.

Proposition 2. In equilibrium, for �p 2 ( �p2; �p3 ), dqA
d p
< 0 , dqN

d p
< 0 , dq

d p
> 0 , dQ

d p
< 0 , and

dP (Q)
d p

= 1 .

Proposition 2 reports that qA and qN both increase as �p declines in [ �p2; �p3 ], causing

P (Q) to decline at the same rate that �p declines. This �nding re�ects the net impact of two

countervailing e¤ects of a binding price cap. A reduction in p reduces the unit compensation

that R derives from selling qA. The reduced unit compensation induces R to reduce qA,

ceteris paribus. We call this the compensation reduction e¤ect of a binding price cap. A

16The values of p1, p2, and p3 are speci�ed in the Appendix. We assume that �p2 > c to help ensure that
q > 0 in equilibrium.

17p3 is the equilibrium price, P (Q), in the absence of a price cap.
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countervailing output enhancement e¤ect of a binding price cap also arises. The cap shields

a portion of R�s total output (QR = qA + qN) from the key drawback to an increase in QR,

namely the associated reduction in P (Q). The price cap thereby enhances R�s incentive to

increase its output.

When p is set marginally below the unrestricted equilibrium price (p3), the impact of

the compensation reduction e¤ect is relatively limited, so the marginally lower price that R

secures for qA induces a relatively small reduction in qA, ceteris paribus. The predominant

e¤ect of reducing p marginally below p3 is to increase R�s output, re�ecting the output

enhancement e¤ect.18 The expanded output reduces P (Q), causing this price to decline at

the same rate that p declines.19

qA increases further as p declines farther below p3. The increase in qA increases the

magnitude of the compensation reduction e¤ect, causing R�s pro�t from supplying qA to

decline more rapidly as p declines. Eventually, the compensation reduction e¤ect outweighs

the output enhancement e¤ect, inducing R to reduce qA as p declines below p2.
20 The

corresponding increase in P (Q) causes P (Q) to exceed p when p < p2.
21

Having established how a binding price cap a¤ects equilibrium outputs and prices for

�p 2 ( �p2; �p3 ), we can determine the corresponding impact on R�s revenue:

V (p ) � p qA(�) + P (Q(�)) qN(�) . (6)

Proposition 3. For �p 2 ( �p2; �p3 ): (i) V (p ) is a strictly concave function of p ; (ii) @V (p )
@ p

Q
0 , p R pV3M where pV3M 2 [ p2; p3); and (iii) pV3M = p2 if �1 � 0, whereas pV3M > p2

if �1 < 0, where

�1 �
�
kR +

b2

2 b+ k

�
[ kA + kN ]A+2 b [ b+ k ] cA [ kN + b ]

+ [ 2 b (b+ k) cN + AkN ] [ kA � b ] and A � a [ b+ k ] + b c . (7)

Proposition 3 reports that as p declines below p3, a more stringent price cap increases

R�s revenue. Furthermore, R�s revenue increases at a decreasing rate as �p declines below �p3,

as illustrated in Figure 1.22
[Figure 1 about Here ]

18Miller (2023) reports that Russian oil exports have increased since the Alliance imposed its price cap.
19R will not increase its output to a level that causes P (Q) to decline below p. If R did so, the entirety of
its output would be exposed to any reduction in P (Q), which would eliminate R�s enhanced incentive to
expand its output relatively aggressively.

20Lemma 3 (below) establishes that dqAd p > 0 when �p 2 ( �p1; �p2 ).
21Recall from Proposition 1 that P (Q) > p when p < p2.
22As Figure 1 illustrates, V3( �p ) continues to increase as �p declines below �p3 to �pV3M , which: (i) exceeds �p2
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R�s revenue increases as �p declines marginally below �p3 because the relatively pronounced

output enhancement e¤ect of a reduction in �p induces R to increase qA relatively rapidly.

R continues to increase qA as �p declines further below �p3. (Recall Proposition 2.) The

higher level of qA increases the impact of the compensation reduction e¤ect, which causes

R�s revenue to increase more slowly as �p declines in ( �p2; �p3 ). Consequently, as conclusion (i)

in Proposition 3 reports, V (p ) is a concave function of �p when �p 2 ( �p2; �p3 ).

If qA and qN increase su¢ ciently rapidly as �p declines in ( �p2; �p3 ), the compensation

reduction e¤ect can outweigh the output expansion e¤ect, so a reduction in �p can reduce R�s

revenue as �p declines toward �p2. This is the case when �1 < 0, as illustrated in Figure 1.23

Alternatively, R�s revenue can continue to increase as �p declines for all �p 2 [ �p2; �p3 ].24

Propositions 1 � 3 establish that a price cap can introduce two e¤ects that are not

commonly recognized in policy discussions. First, R�s output and its revenue can increase

as the cap declines below the level at which it �rst binds (p3). Second, the increase in R�s

output can cause P (Q) to decline.25

To assess the practical importance of these potentially counterintuitive �ndings, it is

useful to consider the following baseline setting. Although our analysis abstracts from the

intertemporal considerations associated with non-renewable resources, the parameters in the

baseline setting are chosen to re�ect selected elements of Russia�s activity in the oil sector,

given the world�s focus on the cap that is presently being imposed on the price of oil sold by

Russian suppliers that employ Alliance inputs.26

We choose demand parameters a and b to ensure that in the absence of a price cap,

the equilibrium price is 70 (dollars) and equilibrium total output is 90 million units (e.g.,

barrels of oil per day) when the price elasticity of demand is � 0:75.27 This elasticity, which
exceeds common estimates of the price elasticity of demand for oil,28 helps to ensure that the

if �1 < 0; and (ii) is equal to �p2 if �1 � 0.
23It is apparent from (7) that if �1 < 0, then kA < b. When kA is relatively small, qA is relatively large.
Consequently, R�s revenue from supplying qA declines relatively rapidly as �p declines (re�ecting a relatively
pronounced compensation reduction e¤ect).

24Proposition 4 (below) establishes that p3 � p2 becomes smaller as cA, kA, or kR increases. It is apparent
from (7) that �1 increases as cA, kA, or kR increases. Thus, Conclusion (iii) in Proposition 3 indicates that
V (p ) declines as p declines throughout the entire [ �p2; �p3 ] interval when this interval is relatively small.

25In contrast, P (Q) would increase if R were denied all access to A�s input.
26The Appendix considers substantial variation of the parameters in the baseline setting.
27In 2021 (the year prior to Russia�s invasion of Ukraine), the average Brent oil price was approximately $71
per barrel (U.S. Energy Information Administration, 2023). The average daily world production of oil in
2021 was approximately 89:9 million barrels (bp, 2022, p. 15).

28Caldara et al. (2016)�s review of studies of the short-run price elasticity of demand for oil reports an average
elasticity of � 0:22.
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speci�ed equilibrium price and output prevail in our duopoly model when arguably plausible

values for cost parameters are adopted.29 These considerations imply that a = 163:33 and

b = 1:03703� 10�6 because:

@Q

@p

p

Q
= � 1

b

�
70

90; 000; 000

�
= � 0:75 ) b = 1:03703� 10�6 ; and

P (Q) = a� b [ 90; 000; 000 ] = 70 ) a = 70 + 1:03703 [ 90 ] � 163:33 .

The cost parameters in our baseline setting are chosen so that, in the absence of a

price cap, R�s equilibrium marginal cost when it employs A�s input is approximately 25

(dollars), and R�s corresponding average variable cost is approximately 15.30 Furthermore,

the rival�s cost is presumed to parallel�s R�s cost when R employs A�s input (i.e., c = cA

and k = kA + kR ). In addition, we assume cA = � cN and kA = � kN , and set � = 0:5 to

capture R�s cost saving from employing A�s input. Table 1 records the parameter values in

the baseline setting.31

Parameter Parameter Value Parameter Parameter Value

a 163:33 cN 5

b 1:03703� 10�6 kN 1� 10�6

cA 2:5 c 2:5

kA 5� 10�7 k 6� 10�7

kR 1� 10�7

Table 1. Parameters in the Baseline Setting.

Table 2 identi�es key equilibrium outcomes in the baseline setting.32 The �rst column of

data implies that P (Q) = p as p declines from p3 = 71:52 to p2 = 56:35.
33 Thus, as indicated

29The identi�ed equilibrium price and output can arise when equilibrium demand is substantially less elastic
if the number of industry suppliers is su¢ ciently large. We consider duopoly competition for analytic ease.

30Horwich (2023) estimates Russia�s marginal cost of supplying oil to be approximately $20 per barrel. The
Center for Research on Energy and Clean Air (2023) estimates this cost to be between $2:70 and $25.
Hausmann (2022) suggests that Russia�s average variable cost may be less than $6 per barrel. Kennedy
(2022)�s corresponding estimate is between $20 and $25 per barrel.

31These parameters ensure that in the absence of a binding price cap, P (Q) = 71:52, Q = 88:535 million,
R�s marginal cost (cA + kA qA + kR [ qA + qN ]) is 23:43, and R�s average variable cost (cA + 1

2 kA qA +
1
2 k

R
h
(qA+qN )

2

qA

i
) is 13:34.

32It can be veri�ed that �1 > 0 (so pV3M = p2) in the baseline setting. (Recall Proposition 3.) �1 < 0 (so
pV3M > p2) if, for example, kA is reduced by 50% (to 2:5 � 10�7) while all other parameters remain at
their values in the baseline setting.

33All entries in Table 2 (and subsequent tables) are rounded.
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in the last column in Table 2, P (Q) declines at the same rate that p declines as p declines

by as much as 21% below p3. The middle columns in Table 2 report corresponding changes

in R�s revenue. As illustrated in Figure 2 and as summarized in the last column in Table 2,

R�s revenue increases by approximately 19% as p declines from p3 = 71:52 to p2 = 56:35.

Price Cap R�s Revenue Variation

p1 = 41:82 V (p1) = 2:70� 109 p3� p2
p3

= 0:21

p2 = 56:35 V (p2) = 3:95� 109 V (p2)�V (p3)
V (p3)

= 0:19

p3 = 71:52 V (p3) = 3:32� 109

Table 2. Equilibrium Outcomes in the Baseline Setting.

[Figure 2 about Here ]

Table 2 indicates that under arguably plausible conditions, P (Q) declines at the same rate

that p declines for a relatively broad range of p values. Furthermore, more stringent price

caps can increase R�s equilibrium revenue considerably. Table A1 in the Appendix demon-

strates that values of p3� p2
p3

and V (p2)�V (p3)
V (p3)

similar to those in Table 1 arise in equilibrium

as parameter values diverge from their values in the baseline setting below p3.
34

Proposition 4 identi�es how production costs in�uence the extent of the range in which

P (Q) declines at the same rate that p declines.

Proposition 4. p3 � p2 increases as: (i) cA, kA, or kR declines; (ii) c or cN increases; or
(iii) kN increases if kA � b is su¢ ciently small.

Conclusion (i) in Proposition 4 holds because qA increases as R�s cost of supplying qA
declines (i.e., as cA, kA, or kR declines). The higher level of qA increases the amount of R�s

output that is not exposed to a reduction in P (Q). A binding price cap thereby provides

R with a relatively strong incentive to expand its output aggressively, which increases the

range of p�s for which qA and qN increase as p declines (so P (Q) = p ).

Conclusions (ii) and (iii) in Proposition 4 re�ect in part the fact that qN declines as cN or

kN increases. The reduction in qN leads R to increase qA for two reasons. First, it is apparent

from (1) that R�s marginal cost of supplying qA declines as qN declines. This marginal cost

e¤ect of a reduction in qN induces R to increase qA. Second, the amount of output that

R sells at price P (Q) declines as qN declines. This reduced exposure to the pro�t-reducing

e¤ects of a reduction in P (Q) limits R�s concern about the reduction in P (Q) caused by an

34Sappington and Turner (2023) provides additional evidence to this e¤ect.
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increase in qA. This exposure e¤ect of a reduction in qN also induces R to increase qA.35 The

increase in qA induced by the marginal cost e¤ect and the exposure e¤ect of a reduction in

qN increases the range of p�s for which qA and qN increase as p declines, for the reasons noted

immediately above.

Finally, observe that q declines and P (Q) increases as c increases. The higher price and

increased potential market share for R enhances R�s incentive to increase output aggressively

when a binding price cap eliminates the exposure of some of R�s output to the corresponding

reduction in P (Q). Consequently, p3 � p2 increases as c increases.36

4 Welfare.

We now examine how �p can be set to limit R�s revenue without harming consumers

unduly. To do so, we assume that welfare, W (�), is the di¤erence between consumer surplus,
S(�), and a multiple (d > 0) of R�s revenue. Formally:

W (p ) = S(p )� d [ p qA(p ) + P (Q(p )) qN(p ) ] (8)

where S(p ) denotes equilibrium consumer surplus when the price cap is p.37 To characterize

�p� � argmax fW (�p )g, we �rst examine the properties of consumer surplus when �p 2 (�p2; �p3).

Lemma 1. For �p 2 (�p2; �p3), S(p ) is a strictly decreasing, strictly convex function of p .

Lemma 1 establishes that consumer surplus increases at an increasing rate as �p declines

in (�p2; �p3). (See Figure 1.) This is the case because reductions in �p and P (Q) both increase

consumer surplus. (Recall that �p = P (Q) for all �p 2 (�p2; �p3).) As �p declines in (�p2; �p3),
equilibrium output increases, re�ecting the output enhancement e¤ect. (Recall Proposition

2.) The increased output causes consumer surplus to increase more rapidly as the prevailing

price ( �p = P (Q)) declines.

Proposition 3 and Lemma 1 imply that welfare is a strictly convex function of �p for

�p 2 (�p2; �p3 ]. Consequently, �p� is never in (�p2; �p3). Furthermore, a binding price cap always
improves welfare, i.e., �p� < �p3. This conclusion re�ects in part:
35The exposure e¤ect is relatively pronounced when P (Q) is relatively sensitive to changes in output, i.e.,
when b is relatively large (so kA � b is relatively small).

36Corresponding analytic conclusions about the impact of parameter values on p3� p2
p3

are not available.

Numerical solutions reveal that p3� p2
p3

often increases as: (i) a, cA, kA, or kR declines; or (ii) cN , kN , k,

or b increases. Thus, p3� p2p3
and p3 � p2 tend to become relatively large as cN and kN increase relative to

cA and kA, i.e., as it becomes relatively costly for R to �evade� the e¤ects of the price cap. This is the
case in the baseline setting, for example, and for substantial variation in parameters around their values
in the baseline setting.

37We assume that e¢ cient rationing prevails, so the marginal consumer valuation of each unit of qA that is
sold is at least P (Q).
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Lemma 2. V ( �p1) < V ( �p3).

Lemma 2 provides the intuitive conclusion that R�s revenue is lower when the price cap

is so stringent that it induces R to set qA = 0 than when no price cap is imposed. This

�nding implies that if d is su¢ ciently large, then welfare is highest when a binding price cap

is imposed. A binding price cap also maximizes welfare when d is small because consumer

surplus increases as �p declines below �p3. (Recall Lemma 1 and Figure 1.) Consequently, we

have:

Proposition 5. �p� 2 [ �p1; �p2 ].

To determine how �p� varies with the prevailing economic environment, it is helpful to

determine how V (�) and S(�) vary with �p when �p 2 (�p1; �p2). To do so, it is helpful to �rst
establish how equilibrium outputs change as �p declines in (�p1; �p2).

Lemma 3. In equilibrium, for �p 2 ( �p1; �p2 ), dqAd p > 0,
dqN
d p
< 0 , dq

d p
< 0 , dQ

R

d p
> 0 , dQ

d p
> 0 ,

and dP (Q)
d p

< 0 .

Lemma 3 re�ects standard considerations. As the price cap declines below �p2, the reduced

unit compensation for qA induces R to reduce qA. The reduction in qA increases the price

at which qN and q are sold, which induces increases in these outputs.38 The reduction in qA
exceeds the increase in qN and q, so QR and Q decline, and P (Q) increases.

Lemmas 4 and 5 establish how V (�) and S(�) vary with �p when �p 2 (�p1; �p2).

Lemma 4. For �p 2 ( �p1; �p2 ): (i) V (p ) is a strictly convex function of p ; (ii) @V (p )
@ p

Q 0 ,
p Q pV2m where pV2m 2 [ p1; p2); and (iii) pV2m > p1 if �2 � 0, where

�2 � f kR [ 2 b+ k ]
�
kR (2 b+ k) + 2 b (3 b+ 2 k)

�
+ kN [ 2 b+ k ]

�
kR (2 b+ k) + b2

�
+ b2

�
5 b2 + 6 b k + 2 k2

�
g cN �

�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + k

R
�	2

cA

� b
�
b2 � k kN + (2 b+ k) kR

�
[ a (b+ k) + b c ] : (9)

Lemma 5. For �p 2 ( �p1; �p2 ): (i) S(p ) is a strictly concave function of p ; (ii) @S(p )@ p
R 0 ,

p Q pS2M where pS2M 2 (p1; p2 ]; and (iii) pS2M > pV2m.

Lemma 4 reports that R�s revenue declines as �p declines below �p2 toward pV2m, the

p 2 [ p1; p2 ] at which V (p ) is minimized. (See Figure 1.) The revenue reduction re�ects: (i)
38The reduction in qA also reduces R�s marginal cost of producing qN , which enhances R�s incentive to
increase qN .
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the lower unit compensation that R receives for qA as �p declines; and (ii) the reduction in

qA that arises as �p declines in (�p1; �p2). (Recall Lemma 3.) The convexity of V (p ) reported

in Lemma 4 implies that V (�) declines more slowly as �p declines toward pV2m (as depicted
in Figure 1). This is the case because R�s supply of qA declines as p declines in this range,

which diminishes the revenue-reducing compensation reduction e¤ect of a more stringent

price cap.

Lemma 5 reports that when pS2M , the p 2 [ p1; p2 ] at which S(p ) is maximized, is strictly
below p2 (as in Figure 1), consumer surplus initially increases as �p declines below �p2. The

increase in S(�) re�ects in part the lower �p at which qA is sold. The concavity of S(�)
reported in Lemma 5 implies that the rate at which consumer surplus increases as �p declines

diminishes as �p declines toward pS2M . The diminishing rate of increase in S(�) re�ects the
reduction in qA that R implements as p declines in (�p1; �p2). Eventually, S(�) declines as p
declines (below pS2M), re�ecting the increase in P (Q) induced by the reduction in qA (and

the fact that the reduction in �p reduces the price at which a relatively small number of units

are sold as �p approaches �p1). (See Figure 1.)

For emphasis, we state the following direct implication of Lemma 4.

Corollary to Lemma 4. @V (p )
@ p

���
p= p1

< 0 if �2 � 0.

This corollary states that R�s revenue declines as p increases above �p1 when �2 � 0.

Consequently, relaxing the price cap by raising p above the level at which it induces R to set

qA = 0 reduces R�s revenue when �2 � 0. As (9) suggests, �2 � 0 if cN � cA is su¢ ciently
large. In this case, R reduces qN relatively rapidly as qA increases in response to the increase

in p above p1. The reduction in qN (sold at the relatively high price, P (Q)) reduces R�s

revenue, despite the increase in qA (sold at the relatively low price, p).39

Lemma 5 and the Corollary to Lemma 4 imply that when �2 � 0, an increase in �p above
�p1 both reduces R�s revenue and increases consumer surplus.40 Consequently, the welfare-

maximizing price cap generates a strictly higher level of welfare than does a refusal to supply

any of the Alliance input to R (which would induce R to set qA = 0). In contrast, such a

refusal (or setting �p � �p1) maximizes welfare when �2 < 0 (so R�s revenue increases as �p

increases above �p1) and society is primarily concerned with limiting R�s revenue. Formally:

39�2 < 0 in the baseline setting, and for the variations in the baseline parameters identi�ed in Table A1.
�2 > 0 if, for example, cN exceeds 21 while all other parameters remain at their values in the baseline
setting.

40Consumer surplus increases in part because as �p increases above �p1, there is no �rst-order e¤ect on consumer
surplus associated with qA (because qA � 0). Furthermore, when cA is su¢ ciently small relative to cN ,
the increase in �p induces R to increase qA by more than qN and q decline, so P (Q) declines.
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Proposition 6. �p� > �p1 if �2 � 0. �p� = �p1 if �2 < 0 and d is su¢ ciently large.

The properties of V (p ) and S(p ) in (�p1; �p2) provide:

Proposition 7. �p� 2 [ pV2m; pS2M ]. Furthermore: (i) �p
� < pS2M when pS2M < p2 and

d > 0; (ii) �p� > pV2m when pV2m > p1; (iii) �p
� ! pS2M as d ! 0; and (iv) �p� ! pV2m as

d !1.

Proposition 7 states that the welfare-maximizing price cap ( �p�) lies between the �p that

minimizes R�s revenue ( pV2m) and the �p that maximizes consumer surplus ( pS2M). This

�nding re�ects two observations. First, �p� cannot lie in ( �pS2M ; �p2) when �pS2M < �p2. This

is the case because if �p 2 ( �pS2M ; �p2), then a reduction in �p would both reduce R�s revenue
and increase consumer surplus. Second, �p� cannot lie in ( �p1; �pV2m) when �pV2m > �p1. This is

the case because if �p 2 (�p1; �pV2m), then an increase in �p would both reduce R�s revenue and
increase consumer surplus. (See Figure 1.)

Conclusion (i) in Proposition 7 reports that �p� lies below �pS2M when �pS2M < �p2 and

d > 0.41 This conclusion arises because a reduction in �p has no �rst-order e¤ect on S(p )

when �p = �pS2M . In contrast, the same reduction in �p reduces R�s revenue because qA declines

as �p declines in (�p1; �p2).42 (Recall Lemma 3.) Conclusion (ii) in Proposition 7 reports that

�p� exceeds �pV2m when �pV2m > �p1. This is the case because an increase in �p has no �rst-order

e¤ect on V (p ) when �p = �pV2m. In contrast, the same increase in �p increases consumer

surplus due to the reduction in P (Q) induced by the corresponding increase in qA.

Conclusion (iii) in Proposition 7 provides the intuitive conclusion that �p� approaches

the level of �p that maximizes S(p ) as the social concern with consumer surplus becomes

particularly pronounced. Similarly, as conclusion (iv) in Proposition 7 reports, �p� approaches

the level of �p that minimizes V (p ) as the social concern with limiting R�s revenue becomes

particularly pronounced.

Figure 3 illustrates how welfare varies with �p in the baseline setting when d = 1
2
, so

W (p ) = S(p ) � 1
2
V (p ). As �p declines from �p3 = 71:52 to �p� = 54:31, welfare increases by

nearly 50%, from 2:40 (million dollars) to 3:58. Welfare then declines to 2:06 as �p declines

from �p� to �p1 = 41:86.43 Table A1 in the Appendix reports that the welfare-maximizing price

41 �p� = �pS2M when d = 0.

42More precisely, @S(p )
@p

���
p= �pS2M

= 0 < @V (p )
@p

���
p= �pS2M

when �pS2M < �p2.

43Numerical solutions reveal that W (�p�) often increases as: (i) cA, kA, kR, c, or k declines; or (ii) a, cN ,
kN , or b increases. This is the case, for example, as parameters vary (substantially) around their values
in the baseline setting. These �ndings indicate in part that higher levels of welfare can often be achieved
when it is more costly for R to diminish the impact of a binding price cap by producing more of its output
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cap generates corresponding increases in welfare as parameter values diverge substantially

from the levels in the baseline setting. Table A2 in the Appendix reports how �p�, p
�

p3
, W (�p�),

and W (p�)�W (p3)
jW (p3) j

vary as d varies in the baseline setting.44

[Figure 3 about Here ]

To understand how �p� changes as industry costs change, it is helpful to �rst determine

how equilibrium outputs change as costs change.

Lemma 6. When �p 2 (�p1; �p2):

(i)
dqA
dc

< 0 ,
dqN
dc

> 0 ,
dQR

dc
R 0 , kA R b ,

dq

dc
< 0 if b is su¢ ciently small , and

dQ

dc
< 0 ;

(ii)
dqA
dcA

< 0 ,
dqN
dcA

> 0 ,
dQR

dcA
< 0 ,

dq

dcA
> 0 , and

dQ

dcA
< 0 ;

(iii)
dqA
dcN

> 0 ,
dqN
dcN

< 0 ,
dQR

dcN
Q 0 , kA R b ,

dq

dcN
R 0 , kA R b , and

dQ

dcN
Q 0 , kA R b .

To understand the conclusions in Lemma 6, recall that qA declines as qN increases due

to the marginal cost e¤ect and the exposure e¤ect of an increase in qN .45 When b is large,

P (Q) is relatively sensitive to changes in qA. Consequently, when b is large, an increase in

qN induces R to reduce qA relatively rapidly (re�ecting the relatively pronounced exposure

e¤ect). Therefore, when b is su¢ ciently large, QR declines as qN increases because qA declines

more rapidly than qN increases. These considerations help to explain the �ndings in Lemma

6 as follows.

As c increases: (i) qN increases, re�ecting in part the weaker competitive position of R�s

rival; (ii) qA declines in response, re�ecting the marginal cost e¤ect and the exposure e¤ect;

(iii) when b is su¢ ciently large (b > kA), qA declines more rapidly than qN increases, causing

without employing the Alliance input.
44The absolute value sign in the denominator of the proportionate increase in welfare re�ects the fact that
welfare as de�ned in (8) can be negative if d is su¢ icently large.

45Recall that the marginal cost e¤ect arises because R�s marginal cost of supplying qA increases as qN
increases. The exposure e¤ect arises because the amount of output that R sells at price P (Q) increases as
qN increases.
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QR to decline; (iv) total output declines, re�ecting in part the higher industry costs; and (v)

q declines if b is su¢ ciently small, in which case QR increases.46

As cA increases: (i) qA declines, re�ecting R�s higher cost; (ii) qN increases because the

reduction in qA increases P (Q) and reduces R�s marginal cost of supplying qN ; (iii) QR

declines in part because the increase in qN further enhances R�s incentive to reduce qA (due

to the marginal cost e¤ect and the exposure e¤ect); (iv) q increases because q and QR are

strategic substitutes; and (v) Q declines, re�ecting in part the higher industry production

cost.

As cN increases: (i) qN declines, re�ecting R�s higher cost; (ii) qA increases, re�ecting

the marginal cost e¤ect and the exposure e¤ect; (iii) QR declines if b is su¢ ciently small,

re�ecting the relatively limited exposure e¤ect; (iv) q increases if b is su¢ ciently small,

because q and QR are strategic substitutes; and (v) Q declines if b is su¢ ciently small,

re�ecting the relatively large decline in QR in this case (due to the relatively limited exposure

e¤ect).

These considerations help to explain how p� changes as industry costs change.

Proposition 8. When �p� 2 (�p1; �p2): (i) d p�

dcA
> 0 ; (ii) d p�

dkA
> 0 ; (iii) d �p�

dc
> 0 ; and (iv)

d p�

dcN
< 0 .

To understand the conclusions in Proposition 8, �rst observe that when �p� 2 (�pV2m; �pS2M),
a more stringent price cap reduces R�s revenue and also reduces consumer surplus (by in-

creasing P (Q)). (See Figure 1.) Both e¤ects re�ect in part the reduction in qA (which

exceeds the increase in qN and q) induced by a reduction in p.

Conclusions (i) and (ii) in Proposition 8 re�ect the fact that qA declines as cA or kA
increases. The reduction in qA diminishes the potential welfare gain from reducing �p for

two reasons. First, when qA is small, the surplus of consumers that purchase qA increases

relatively slowly as �p declines. Second, when qA is small, R�s revenue from selling qA declines

relatively slowly as �p declines. Both sources of diminished bene�t from reducing �p toward

�pV2m imply that �p
� increases (i.e., d p

�

dcA
> 0).

Conclusion (iii) in Proposition 8 holds because qN increases as c increases, re�ecting the

weakened competitive position of the rival. The increase in qN induces R to reduce qA,

re�ecting the marginal cost e¤ect and the exposure e¤ect. The reduction in qA implies that

R�s revenue from selling qA declines relatively slowly as �p declines. This diminished welfare

gain from reducing �p implies that �p� increases toward �pS2M (i.e., d p
�

dc
> 0).

46q and QR are strategic substitutes.
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Conclusion (iv) in Proposition 8 arises because qN declines as cN increases. The reduction

in qN induces R to increase qA, re�ecting both the marginal cost e¤ect and the exposure

e¤ect. The increase in qA implies that R�s revenue from selling qA declines relatively rapidly

as �p declines. This increased welfare gain from reducing �p implies that �p� declines toward

�pV2m (i.e.,
d p�

dcN
< 0).47

Proposition 8 implies that the welfare-maximizing price cap becomes more stringent as

access to A�s input reduces R�s marginal cost more substantially (i.e., �p� declines as cN � cA
increases). Intuitively, the welfare-maximizing price cap becomes more stringent as the value

of A�s input increases.

5 Conclusions.

We have examined the design of price caps as an instrument to reduce the (tax) revenue

available to a sanctioned nation without causing the world price of a key product to increase

excessively. We have shown that a price cap on a portion of a supplier�s output can have

potentially counterintuitive e¤ects. Speci�cally, the price cap can increase, not reduce, the

supplier�s revenue by inducing the supplier to increase its output. Furthermore, the sanc-

tioned supplier�s increased output can cause the world price of the product to decline, not

increase.

We have also shown that the welfare-maximizing price cap often is well below the prevail-

ing market price of the product, and that a price cap can enhance welfare considerably under

arguably plausible conditions. In addition, we have shown that raising a price cap above

the level that would eliminate sales at the capped price often can both increase consumer

surplus and reduce the revenue of the sanctioned producer. Thus, moderately stringent price

caps often outperform relatively lenient or particularly severe price caps.

Our streamlined duopoly model was designed to illustrate simply and clearly potentially

subtle e¤ects of price caps as sanctions. Future research should consider more general de-

mand and cost functions, di¤erentiated products, more than two suppliers, and alternative

market interactions (e.g., bargaining among industry suppliers and large buyers). Future

research should also consider alternative (e.g., nonlinear) welfare functions and allow the

sanctioned supplier to act to reduce the cost it incurs when it operates without access to key

(Alliance) inputs. Future research might also consider the coordination (and enforcement)

problems that arise when the nations that impose the price cap di¤er in their valuations of

the sanctioned product.

47Numerical solutions reveal that �p� also often increases as: (i) a, k, or kR increases; or (ii) kN or b declines.
This is the case, for example, in the baseline setting and for substantial variation in parameters around
their values in the baseline setting.

16



These model extensions likely will alter the extent to which a more stringent price cap

increases the revenue of a sanctioned supplier, the magnitude of the welfare-maximizing

pice cap, and the potential welfare gains from a price cap. However, the model extensions

seem unlikely to alter the conclusion that strategic, oligopolistic considerations merit careful

consideration in any comprehensive analysis of the use of price caps as sanctions.
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Appendix

Part A of this Appendix illustrates how equilibrium outcomes change as parameter values
diverge from their levels in the baseline setting. Part B presents the proofs of the formal
conclusions in the text.

A. Outcomes in Settings Other Than the Baseline Setting.

Parameter Variation p3� p2
p3

V (p2)�V (p3)
V (p3)

p� p�

p3

W (p�)�W (p3)
W (p3)

1:50 a 0:21 0:19 81:08 0:76 0:48
0:50 a 0:21 0:21 27:55 0:75 0:52
1:50 b 0:26 0:19 49:57 0:74 0:51
0:50 b 0:13 0:19 59:56 0:72 0:65
1:50 cA 0:20 0:20 55:24 0:77 0:46
0:50 cA 0:22 0:19 53:39 0:75 0:51
1:50 kA 0:15 0:18 57:86 0:79 0:34
0:5 kA 0:35 0:15 45:36 0:65 0:87
1:50 kR 0:20 0:20 55:47 0:77 0:46
0:50 kR 0:23 0:19 53:06 0:75 0:52
1:50 cN 0:22 0:20 53:58 0:75 0:52
0:50 cN 0:20 0:19 55:05 0:77 0:46
1:50 kN 0:24 0:21 51:03 0:71 0:60
0:50 kN 0:17 0:15 58:81 0:83 0:34
1:50 c 0:21 0:19 54:51 0:76 0:50
0:50 c 0:21 0:19 54:12 0:76 0:48
1:50 k 0:22 0:17 56:22 0:75 0:63
0:50 k 0:20 0:23 51:78 0:77 0:36

Table A1. The E¤ects of Changing Baseline Parameters.

The �rst column in Table A1 identi�es the single parameter that is changed in the baseline
setting and the amount by which it is changed. All other parameters remain at their levels
in the baseline setting.48 The remaining columns in Table A1 identify the outcomes that
arise in equilibrium. The welfare calculations in the last column assume d = 1

2
.

48For example, the �rst row of data in Table A1 records the outcomes that arise in equilibrium when a is
increased by 50% above its level in the baseline setting, holding all other parameters at their values in the
baseline setting.
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d p� p�

p3
W (p�) jW (p�)�W (p3) j

jW (p3) j

0:0 56:35 0:79 5:518� 109 0:36
0:25 56:26 0:79 4:529� 109 0:40
0:50 54:31 0:76 3:579� 109 0:49
0:75 52:79 0:74 2:688� 109 0:70
1:0 51:56 0:72 1:837� 109 1:46
2:0 48:36 0:68 � 1:325� 109 0:48
10:0 42:70 0:60 � 23:873� 109 0:18

Table A2. The E¤ects of Changing d in the Baseline Setting.

The �rst column in Table A2 identi�es the value of d in the welfare function W (�) =
S(�) � d V (�). The remaining columns report the corresponding welfare-maximizing price
cap, the ratio of this price cap to the unrestricted equilibrium price (p3), the maximized
level of welfare, and the proportionate maximum welfare gain, respectively.49

B. Proofs of Formal Conclusions in the Text50

Proof of Proposition 1. The proof follows directly from Lemmas A1 �A6 (below), which
refer to the following de�nitions.51

�p1 � cA +
[ a� cN ] [ 2 b+ k ] � b [ a� c ]
[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

�
b+ kR

�
. (10)

�p2 �
1

D2

f [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g

where D2 � b [ b+ k ] [ kN + kA ] + kN [ kA � b ] [ 2 b+ k ]

+ [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
. (11)

�p3 �
1

D3

f [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA

�
+ b cN [ b+ k ] kA + b kN [ b+ k ] cA g

where D3 � b [ b+ k ] [ kN + kA ] + kN kA [ 2 b+ k ]

49The relatively large welfare gain that arises when d = 1 arises in part because W (p3) is relatively close to
0 in the baseline setting when d = 1.

50Part B of this Appendix sketches the proofs of the formal conclusions in the text. Detailed proofs are
available in Sappington and Turner (2023).

51The proofs of Lemmas A1, A2, and A4 �A6 employ relatively standard techniques, and so are omitted.
Detailed proofs of these lemmas are available in Sappington and Turner (2023).
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+ [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
= D2 + b kN [ 2 b+ k ] . (12)

Lemma A1. Suppose �p � �p1. Then in equilibrium:

qA = 0 , qN =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]
[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

,

q =
[ a� c ]

�
2 b+ kN + k

R
�
� b [ a� cN ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
, and

Q = qA + qN + q =
[ a� c ]

�
b+ kN + k

R
�
+ [ a� cN ] [ b+ k ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
. (13)

Lemma A2. Suppose �p 2 ( �p1; �p2 ]. Then in equilibrium:

qA =
1

D
f
�
3 b2 + 2 b

�
k + kN + k

R
�
+ k

�
kN + k

R
� �
[ p� cA ]

+ b
�
b+ kR

�
[ a� c ]� [ 2 b+ k ]

�
b+ kR

�
[ a� cN ] g ; (14)

qN =
1

D
f [ 2 b+ k ]

�
kA + k

R
�
[ a� cN ]� b

�
kA + k

R
�
[ a� c ]

�
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
[ p� cA ] g ; (15)

QR � qA + qN =
1

D
f [ 2 b+ k ] [ b+ kN ] [ p� cA ] + [ 2 b+ k ] [ kA � b ] [ a� cN ]

� b [ kA � b ] [ a� c ] g ; (16)

q =
1

D
f
�
kN
�
kA + k

R
�
+ kA k

R + 2 b kA � b2
�
[ a� c ]

� b [ kA � b ] [ a� cN ]� b [ b+ kN ] [ p� cA ] g ; and (17)

Q = q + qA + qN =
1

D
f [ b+ k ] [ b+ kN ] [ p� cA ] + [ b+ k ] [ kA � b ] [ a� cN ]

+
�
kR (kA + kN ) + kA (b+ kN )

�
[ a� c ] g . (18)

Lemma A3. Suppose �p 2 ( �p2; �p3 ], where �p2 < �p3. Then in equilibrium, P (Q) = �p.

Furthermore:

qA =
b [ b+ k ] [ cN � cA ] + kN [ a� �p ] [ b+ k ]� b kN [ �p� c ]

b [ b+ k ] [ kN + kA ]
;

qN =
kA [ b+ k ] [ a� �p ]� b kA [ �p� c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
; q =

�p� c
b+ k

;
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QR � qA + qN =
[ b+ k ] [ a� �p ]� b [ �p� c ]

b [ b+ k ]
; and Q � a� �p

b
. (19)

Proof. (4) implies that R�s problem can be written as:

Maximize
qA; QR

�R �
�
PA(q +Q

R)� cA
�
qA +

�
P (QR + q)� cN

� �
QR � qA

�
� kA

2
[ qA ]

2 � kN
2

�
QR � qA

�2 � kR
2

�
QR

�2
where PA(q + QR) =

(
�p if P ( q +QR ) � �p

P ( q +QR ) if �p > P ( q +QR ).
(20)

(20) implies that the necessary conditions for a solution to R�s problem are:

@�R
@qA

= PA
�
q +QR

�
� cA � kA qA �

�
P
�
q +QR

�
� cN

�
+ kN

�
QR � qA

�
= 0 (21)

and
@ +�R
@QR

� 0 <
@ ��R
@QR

, (22)

where @ ��R
@QR

denotes the left-sided derivative of �R with respect to QR, which is relevant

when PA(�) = p, and @ +�R
@QR

denotes the right-sided derivative of �R with respect to QR,
which is relevant when PA(�) = P (Q).

(5) implies that the rival�s choice of q is determined by:

�p� b q � c� k q = 0 , q =
�p� c
b+ k

. (23)

Because �p = a� b
�
q +QR

�
, (23) implies:

�p = a� b
�
�p� c
b+ k

+QR
�
, QR =

[ a� �p ] [ b+ k ]� b [ �p� c ]
b [ b+ k ]

. (24)

Because �p = PA(q +Q
R) in equilibrium, (21) holds if:

�p� cA � kA qA � [ �p� cN ] + kN
�
QR � qA

�
= 0

, cN � cA � kA qA + kN QR � kN qA = 0 . (25)

(24) implies that (25) holds if:

qA =
b [ b+ k ] [ cN � cA ] + kN [ a� �p ] [ b+ k ]� b kN [ �p� c ]

b [ b+ k ] [ kN + kA ]
. (26)

(24) and (26) imply:

qN = QR � qA =
kA [ b+ k ] [ a� �p ]� b kA [ �p� c ] � b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
. (27)
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(26) and (27) imply:

QR � qA + qN =
[ b+ k ] [ a� �p ]� b [ �p� c ]

b [ b+ k ]
. (28)

(23) and (28) imply:

Q � QR + q =
[ b+ k ] [ a� �p ]� b [ �p� c ]

b [ b+ k ]
+
b [ �p� c ]
b [ b+ k ]

=
a� �p

b
.

(20) implies:

@ +�R
@QR

= a� 2 bQR � b q � cN � kN
�
QR � qA

�
� kRQR

= �p� bQR � cN � kN qN � kRQR = �p�
�
b+ kR

�
QR � cN � kN qN ; (29)

@ ��R
@QR

= a� 2 bQR � b q � cN + b qA � kN
�
QR � qA

�
� kRQR

= �p�
�
b+ kR

�
QR � cN + b qA � kN qN . (30)

(29) and (30) imply that (22) can be written as:�
b+ kR

�
QR + cN + kN qN � b qA < �p �

�
b+ kR

�
QR + cN + kN qN . (31)

(12), (24), and (27) imply:

�p �
�
b+ kR

�
QR + cN + kN qN

,
�
b+ kR

�
[ a (b+ k) + b c ] [ kN + kA ] + cN b [ b+ k ] [ kN + kA ]

+ kN [ kA (b + k) a+ b kA c� b (b+ k) (cN � cA) ]

� �p [ b (b+ k) (kN + kA) + kN kA (2 b+ k)

+ (kN + kA) (2 b+ k)
�
b+ kR

�
] = �p D3. (32)

(32) implies:
�p �

�
b+ kR

�
QR + cN + kN qN , �p � �p3 . (33)

(11), (24), (26), and (27) imply:�
b+ kR

�
QR + cN + kN qN � b qA < �p

,
�
b+ kR

�
[ a (b+ k) + b c ] [ kN + kA ] + cN b [ b+ k ] [ kN + kA ]

+ kN [ kA (b+ k) a+ b kA c� b (b+ k) (cN � cA) ]

� b [ b (b+ k) (cN � cA) + kN a (b+ k) + b kN c ]
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< �p [ b (b+ k) (kN + kA) + kN (kA � b) (2 b+ k)

+ (kN + kA) (2 b+ k)
�
b+ kR

�
] = �p D2 . (34)

(34) implies:�
b+ kR

�
QR + cN + kN qN � b qA < �p

, �p >
1

D2

f [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g � �p2 . (35)

(12), (29), (30), (33), and (35) imply:

�p2 =
�
b+ kR

�
QR + cN + kN qN � b qA and

�p3 =
�
b+ kR

�
QR + cN + kN qN . (36)

(36) implies that �p2 < �p3 because qA > 0 when p > p1. �

Lemma A4. Suppose �p > �p3. Then in equilibrium:

qA =
1

D3

f [ a� cA ]
�
2 b k + 2 b kN + 2 b k

R + k kN + k k
R + 3 b2

�
� [ a� cN ]

�
2 b k + 2 b kR + k kR + 3 b2

�
� b kN [ a� c ] g ; (37)

qN =
1

D3

f [ a� cN ]
�
2 b k + 2 b kA + 2 b k

R + k kA + k k
R + 3 b2

�
� [ a� cA ]

�
2 b k + 2 b kR + k kR + 3 b2

�
� b kA [ a� c ] g ; (38)

q =
1

D3

f [ a� c ]
�
2 b kA + 2 b kN + kA kN + kA k

R + kN k
R
�

� b kA [ a� cN ]� b kN [ a � cA ] g ; and (39)

QR � qA + qN =
1

D3

f [ a � cA ] kN [ 2 b+ k ] + [ a � cN ] kA [ 2 b+ k ]

� b [ kA + kN ] [ a� c ] g (40)

where D3 is as speci�ed in (12).

De�nitions

qA1(�p1), qN1(�p1), and q1(�p1), respectively, denote the values of qA(�), qN(�), and q(�) speci�ed
in Lemma A1, where �p � �p1.

qA2(�p1), qN2(�p1), and q2(�p1), respectively, denote the values of qA(�), qN(�), and q(�) speci�ed
in Lemma A2, where �p 2 ( �p1; �p2 ].
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Lemma A5. lim
�p! �p1

qA2(�p ) = qA1(�p1), lim
�p! �p1

qN2(�p ) = qN1(�p1), and lim
�p! �p1

q2(�p ) = q1(�p1).

Lemma A6. 0 < �p1 < �p2 < �p3 . �

Proof of Proposition 2. The conclusions in the proposition follow directly from Lemma A3.
�

Proof of Proposition 3. (24) implies that for �p 2 (�p2; �p3), R�s revenue is:

V (p ) = �p

�
a (b+ k) + b c� �p (2 b+ k )

b [ b+ k ]

�
=
[ a (b+ k) + b c ] �p� [ 2 b+ k ] �p2

b [ b+ k ]
. (41)

The value of �p at which V (p ) in (41) is maximized is determined by:

a [ b+ k ] + b c� 2 [ 2 b+ k ] �p = 0 ) �p =
a [ b+ k ] + b c

2 [ 2 b+ k ]
� �pV3M . (42)

(12) and (42) imply that �pV3M < �p3 if:

a [ b+ k ] + b c

2 [ 2 b+ k ]
<

� �
b+ kR

�
( kN + kA ) + kN kA

� a [ b+ k ] + b c
b [ b+ k ]

+ cN kA + kN cA

kN + kA + [ ( b+ kR ) (kN + kA ) + kN kA ]
2 b+ k
b [ b+ k ]

,
[ 2 b+ k ]

�
b+ kR

�
� b [ b+ k ]

b [ b+ k ]
[ kN + kA ] + kN kA

�
2 b+ k

b (b + k)

�
> 0 . (43)

It is readily veri�ed that the inequality in (43) always holds, so �pV3M < �p3.

(41) and (42) imply that for �p 2 ( �p2; �p3 ), V ( �p ) is a strictly concave function that attains
its maximum at �pV3M . Therefore,

@V ( �p )
@�p

< 0 for �p 2 ( �pV3M ; �p3 ).

(11) and (42) imply that �p2 � �pV3M if and only if:

1

b [ b+ k ] [ kN + kA ] + [ kA kN � kN b ] [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ] [ b+ kR ]

� f [ (b+ k) a+ b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g

� a [ b+ k ] + b c

2 [ b+ k ]

,
�
(b+ k) a+ b c

2 b+ k

� � �
b2 + kR [ 2 b+ k ]

�
(kN + kA) + kN kA (2 b+ k)� b kN (2 b+ k)

�
+ 2 b [ b+ k ] [ kA cN + kN cA � b (cN � cA) ] � 0 . (44)

It is readily veri�ed that:
24



�
b2 + kR (2 b+ k)

�
[ kN + kA ]+kN kA [ 2 b+ k ]�b kN [ 2 b+ k ] = � 2 b [ b+ k ] [ kN + kA ]+D2.

Therefore, (44) implies that �p2 � �pV3M , e�1 � 0 , where:
e�1 � �

(b+ k) a+ b c

2 b+ k

�
fD2 � 2 b [ b+ k ] [ kN + kA ] g

+ 2 b [ b+ k ] [ kA cN + kN cA � b (cN � cA) ] .

It is readily veri�ed that e�1 = �1. �
Proof of Proposition 4. Let qA(�p ) denote R�s equilibrium output using A�s input when the
price cap is �p 2 [ �p2; �p3 ]. Let qN(�p ) denote R�s corresponding output when R does not
employ A�s input. Also let QR(�p ) = qA(�p ) + qN(�p ).

To prove that @( �p3� �p2)
@kR

< 0, observe that (36) implies:

�p3 =
�
b+ kR

�
QR(�p3) + cN + kN qN(�p3)

where, from (19):

qN(�p3) =
kA [ b+ k ] [ a� �p3 ]� b kA [ �p3 � c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
and

QR(�p3) =
[ b+ k ] [ a� �p3 ]� b [ �p3 � c ]

b [ b+ k ]
. (45)

(45) implies that qN(�p3) and QR(�p3) vary with kR only through �p3. Therefore:

@�p3
@kR

= QR(�p3) +
�
b+ kR

� @QR(�p3)
@�p3

@�p3
@kR

+ kN
@qN(�p3)

@�p3

@�p3
@kR

,

@qN(�p3)

@�p3
= � kA [ b+ k ] + b kA

b [ b+ k ] [ kN + kA ]
� DN < 0 , and

@QR(�p3)

@�p3
= � 2 b+ k

b [ b+ k ]
� DR < 0

) @�p3
@kR

=
QR(�p3)

1� [ b+ kR ]DR � kN DN

> 0 . (46)

(19) and (36) imply:

�p2 =
�
b+ kR

�
QR(�p2) + cN + kN qN(�p2)� b qA(�p2)

where qA(�p2) =
b [ b+ k ] [ cN � cA ] + kN [ a� �p ] [ b+ k ]� b kN [ �p� c ]

b [ b+ k ] [ kN + kA ]
;

qN(�p2) =
kA [ b+ k ] [ a� �p2 ]� b kA [ �p2 � c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
; and

QR(�p2) =
[ b+ k ] [ a� �p2 ]� b [ �p2 � c ]

b [ b+ k ]
. (47)

(47) implies that qA(�p2), qN(�p2), and QR(�p2) vary with kR only through �p2. Therefore:
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@�p2
@kR

= QR(�p2) +
�
b+ kR

� @QR(�p2)
@�p2

@�p2
@kR

+ kN
@qN(�p2)

@�p2

@�p2
@kR

� b @qA(�p2)
@�p2

@�p2
@kR

;

@qA(�p2)

@�p2
= � kN [ b+ k ] + b kN

b [ b+ k ] [ kN + kA ]
� DA < 0 ;

@qN(�p2)

@�p2
= � kA [ b+ k ] + b kA

b [ b+ k ] [ kN + kA ]
� DN < 0 ;

@QR(�p2)

@�p2
= � 2 b+ k

b [ b+ k ]
� DR < 0 . (48)

(48) implies:
@�p2
@kR

=
QR(�p2)

1� [ b+ kR ]DR � kN DN + bDA

, and (49)

� bDR + bDA = b

�
2 b+ k

b (b+ k)

� �
1� kN

kN + kA

�
> 0 . (50)

Because DN < 0 and DR < 0 from (48), (50) implies:

1�
�
b+ kR

�
DR � kN DN + bDA > 1� kRDR � kN DN > 0 . (51)

Because DA < 0 from (48), (51) implies:

1�
�
b+ kR

�
DR � kN DN > 0 . (52)

(49) and (51) imply:

@�p2
@kR

=
QR(�p2)

1� [ b+ kR ]DR � kN DN + bDA

> 0 . (53)

(46) and (51) �(53) imply:

@�p3
@kR

� @�p2
@kR

< 0 , QR(�p3)

QR(�p2)
<

1�
�
b+ kR

�
DR � kN DN

1� [ b+ kR ]DR � kN DN + bDA

. (54)

(24) implies that Q
R(�p3)

QR(�p2)
< 1. Furthermore, because 1�

�
b+ kR

�
DR�kNDN + bDA > 0

from (51):
1�

�
b+ kR

�
DR � kN DN

1� [ b+ kR ]DR � kN DN + bDA

> 1 , DA < 0 . (55)

(48) implies that the last inequality in (55) holds. Therefore, (54) holds. Consequently,
because �p3 > �p2 > 0 from Proposition 1, (46) and (54) imply that @(�p3��p2)

@kR
< 0 .

To prove that @(�p3� �p2)
@cN

> 0, observe that (11) and (12) imply:

@�p3
@cN

� @�p2
@cN

=
b [ b+ k ] kA

D2 + b kN [ 2 b+ k ]
� b [ b+ k ] [ kA � b ]

D2

> 0

, D2 � kN [ 2 b+ k ] [ kA � b ] > 0 . (56)

It is readily veri�ed that the inequality in (56) holds.
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To prove that @(�p3� �p2)
@cA

< 0, observe that (11) and (12) imply:

@�p3
@cA

� @�p2
@cA

=
b [ b+ k ] kN

D2 + b kN [ 2 b+ k ]
� b [ b+ k ] [ kN + b ]

D2

< 0

, D2 + kN [ 2 b+ k ] [ kN + b ] > 0 . (57)

It is readily veri�ed that D2 > 0, so the inequality in (57) holds.

To prove that @(�p3� �p2)
@c

> 0, observe that (11) and (12) imply:

@ ( �p3 � �p2)

@c
s
=
kA
�
b+ kR

�
+ kN

�
kA + k

R + b
�

D3

�
kA
�
b+ kR

�
+ kN

�
kA + k

R
�

D2

> 0

, b [ b+ k ] [ kN + kA ] + kN [ kA � b ] [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
>
� �
b+ kR

�
(kA + kN) + kN (kA � b)

�
[ 2 b+ k ] , b [ b+ k ] [ kN + kA ] > 0 .

The proofs of the remaining conclusions are similar, but more tedious. See Sappington
and Turner (2023) for details. �

Recall that welfare is:

W ( �p ) � S( �p )� d [ p qA + ( a� b [ qA + qN + q ] ) qN ] = S( �p )� d V ( �p ) (58)

where d > 0 is a parameter and S(�) denotes consumer surplus. The gross value that
consumers derive from Q units of output is:

1

2
[ a� P (Q) ]Q+ P (Q)Q =

1

2
[ a+ P (Q) ]Q =

1

2
[ a+ a� bQ ]Q = a Q� b

2
Q2.

Therefore, consumer surplus when the price cap is �p is:

S( �p ) = aQ� b

2
Q2 � �p qA � P (Q) [ qN + q ] . (59)

Proof of Lemma 1. (19) implies that when �p 2 (�p2; �p3) (so P (Q) = �p ), Q = a��p
b
)

@Q
@�p
= � 1

b
. Therefore, (59) implies:

@S( �p )

@�p
= � a� �p

b
< 0 ) @2S( �p )

@ (�p )2
=
1

b
> 0 . � (60)

Proof of Lemma 2. Lemmas A1 and A3 imply that because qA(�p1) = 0 and P (Q(�p3)) = �p3:

V (�p1) = �p1 qN(�p1) = �p1
[ a� cN ] [ 2 b+ k ]� b [ a� c ]
[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

;

V (�p3) = �p3 Q
R(�p3) = �p3

[ b+ k ] [ a� �p3 ]� b [ �p3 � c ]
b [ b+ k ]

. (61)

De�nition. DN �
�
2 b+ kN + k

R
�
[ 2 b+ k ]� b2 . (62)
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Because �p1 < �p3, (61) and (62) imply that V (�p1) < V (�p3) if:

qN(�p1) =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

DN

<
[ b+ k ] [ a� �p3 ]� b [ �p3 � c ]

b [ b+ k ]
= QR(�p3)

, a [ b+ k ] + b c� cN [ 2 b+ k ]
DN

<
[ b+ k ] a+ b c� [ 2 b+ k ] �p3

b [ b+ k ]

,
[ a (b+ k) + b c ]

�
b+ kN + k

R
�
+ cN b [ b+ k ]

DN

> �p3 : (63)

(12) implies:

�p3 =
[ a (b+ k) + b c ]

� �
b+ kR

�
(kN + kA) + kN kA

�
+ b cN [ b+ k ] kA + b kN [ b+ k ] cA

b [ b+ k ] [ kN + kA ] + kN kA [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ] [ b+ kR ]
:

(64)

As established in the proof of Proposition 4, �p3 is increasing in kA. Therefore, (64) implies
that because kA � kN by assumption:

�p3 �
[ a (b+ k) + b c ]

�
2 kN

�
b+ kR

�
+ (kN)

2 �+ b cN [ b+ k ] kN + b kN [ b+ k ] cA
2 b [ b+ k ] kN + (kN)

2 [ 2 b+ k ] + 2 kN [ 2 b+ k ] [ b+ kR ]
: (65)

(12) implies that �p3 is increasing in cA. Therefore, because cA � cN by assumption, (65)
implies:

�p3 �
[ a (b+ k) + b c ]

�
2 kN

�
b+ kR

�
+ (kN)

2 �+ 2 b cN [ b+ k ] kN
2 b [ b+ k ] kN + (kN)

2 [ 2 b+ k ] + 2 kN [ 2 b+ k ] [ b+ kR ]

=
[ a (b+ k) + b c ]

�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
2 b+ kR + kN

2

�
� b2

: (66)

(62), (63), and (66) imply that the Lemma holds if:

[ a (b+ k) + b c ]
�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
2 b+ kR + kN

2

�
� b2

<
[ a (b+ k) + b c ]

�
b+ kR + kN

�
+ b cN [ b+ k ]

[ 2 b+ k ] [ 2 b+ kR + kN ]� b2
:

It can be veri�ed that this inequality holds. �

Proof of Proposition 5. Proposition 3 and Lemma 1 imply that W (�) is a strictly convex
function of �p for �p 2 (�p2; �p3). Therefore, �p� =2 (�p2; �p3). Lemma A1 implies that W ( �p ) =
W ( �p1) for all �p < �p1. Lemma A4 implies that W ( �p ) = W ( �p3) for all �p > �p3. Therefore,
�p� 2 [ �p1; �p2 ]

S
�p3 .

It remains to show that �p� 6= �p3. The proof of Lemma 2 establishes that:

28



QR(�p1) < QR(�p3) : (67)

Lemma A6 and Proposition 2 imply:

QR(�p3) < QR(�p2) : (68)

(67) and (68) imply that QR(�p1) < QR(�p3) < QR(�p2). QR(�p ) is continuous and monoton-
ically increasing in �p for �p 2 (�p1; �p2) (from Lemma A2). Therefore, the intermediate value
theorem implies that there exists a �pE 2 (�p1; �p2) such that:

QR(�pE) = QR(�p3) : (69)

(5) implies that the rival�s output q is determined by:

a� b
�
QR(�p ) + q(�p )

�
� c� b q(�p )� k q(�p ) = 0 : (70)

(69) and (70) imply:
q(�pE) = q(�p3) : (71)

(69) and (71) imply:

Q(�pE) = Q(�p3) and P (Q(�pE) ) = P (Q(�p3) ) : (72)

R�s revenue is:

V2(�pE) = �pE qA(�pE) + P (Q(�pE) ) qN(�pE)

< P (Q(�pE) ) qA(�pE) + P (Q(�pE) ) qN(�pE)

= P (Q(�pE) ) Q
R(�pE) = P (Q(�p3) ) Q

R(�p3) = V3(�p3) . (73)

The inequality in (73) holds because �pE < P (Q(�pE) ), since �pE 2 (�p1; �p2). The penultimate
equality in (73) re�ects (72). The last equality in (73) holds because P (Q(�p3) ) = �p3.

(59) and (72) imply:

S(�pE) = a Q(�pE)�
b

2
Q(�pE)

2 � P (Q(�pE) ) [ q(�pE) + qN(�pE) ]� �pE qA(�pE)

> a Q(�pE)�
b

2
Q(�pE)

2 � P (Q(�pE) ) [ q(�pE) + qN(�pE) + qA(�pE) ]

= a Q(�pE)�
b

2
Q(�p3)

2 � P (Q(�p3) ) Q(�p3) = S(�p3) . (74)

The inequality in (74) holds because �pE < P (Q(�pE) ), since �pE 2 (�p1; �p2). (73) and (74)
imply that consumer surplus is higher and R�s revenue is lower when �p = �pE than when
�p = �p3. Therefore, W (�pE) > W (�p3), so �p� 6= �p3. �

Proof of Lemma 3. The conclusions in the lemma follow directly from Lemma A2. �
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Proof of Lemma 4 and its Corollary.

De�ne eV2(�p ) � qA2(�p ) �p + qN2(�p )P (Q2(�p )) (75)

where qA2(�p ) and qN2(�p ) are as de�ned in (14) and (15), respectively. Observe that eV2(�p ) =
V (�p ) for �p 2 [ �p1; �p2 ]. Because P (Q2) = a� bQ2, (75) implies:

@ eV2( �p )
@�p

= qA2 + �p
@qA2
@�p

+ P (Q2)
@qN2
@�p

� b qN2
@Q2
@�p

. (76)

(2) and Lemma A2 imply that @
2qA2
@(�p )2

= @2qN2
@(�p )2

= @2q2
@(�p )2

= @2Q2
@(�p )2

= 0. Therefore, (76) implies:

@2eV2( �p )
@ ( �p )2

= 2
@qA2
@�p

� 2 b @Q2
@�p

@qN2
@�p

> 0 . (77)

The inequality in (77) holds because D > 0 by assumption, so @qA2
@�p

> 0 from (14), @Q2
@�p

> 0

from (18), and @qN2
@�p

< 0 from (15).

�pV2m � argmin
�p

f eV2(�p )g is unique and is determined by:
@ eV2(�pV2m)

@�p
� @ eV2(�p )

@�p

�����
�p= �pV2m

= 0. (78)

This is the case because (2), (14) �(18), and (76) imply that @
eV2(�p)
@�p

is a linear function of �p.

Therefore, eV2(�p ) is a quadratic function of �p. Consequently, (77) implies that eV2(�p ) has a
unique minimum that is determined by (78).

To prove the Corollary to Lemma 4 and thereby establish that pV2m > p1 when �2 � 0,
observe that R�s revenue is:

V (�p ) = �p qA + P (Q) qN = �p qA + [ a� bQ ] qN . (79)

(79) implies that the Corollary to Lemma 4 holds if:

@+V (�p1)

@�p
= qA + �p1

@qA
@�p

� b @Q
@�p
qN + P (Q)

@qN
@�p

< 0 , (80)

where: (i) @+V (�p1)
@�p

= @+V (�p)
@�p

���
�p= �p1

denotes the right-sided derivative of V (�); (ii) @qA
@�p
, @qN

@�p
,

and @Q
@�p
pertain to the quantities identi�ed in Lemma A2; and (iii) qA, qN , and Q are as

de�ned in Lemma A1.

Lemma A2 implies that when �p 2 (�p1; �p2):
@qN
@�p

= � b k + 2 b k
R + k kR + b2

D
;

@qA
@�p

=
E

D
; and

@Q

@�p
=
[ b+ k ] [ b+ kN ]

D

where E � b [ 3 b+ 2 k ] + [ 2 b+ k ]
�
kN + k

R
�
. (81)

Lemma A1 implies that when �p � �p1:
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qN =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

E
, q =

[ a� c ]
�
2 b+ kN + k

R
�
� b [ a� cN ]

E
,

and P (Q) =
aE � b [ a� cN ] [ b+ k ]� b

�
b+ kN + k

R
�
[ a� c ]

E
. (82)

(80) �(82) imply that because qA = 0 when �p = �p1 (from Lemma A1):

@+V (�p1)

@�p
=

1

DE
f �p1E2 � b [ b+ k ] [ b+ kN ] [ (a� cN) (2 b+ k)� b (a� c ) ]

�
�
aE � b (a� cN) (b+ k)� b

�
b+ kN + k

R
�
(a� c )

�
�
�
b k + 2 b kR + k kR + b2

�
g . (83)

Tedious calculations reveal that the expression in (83) is strictly negative when �2 � 0.

It remains to prove that pV2m < p2, which is established by demonstrating that
@�V (p )
@ p

���
p= p2

> 0 . De�ne V2(�p ) � �p qA(�) + P (Q(�)) qN(�) for �p 2 (�p1; �p2). Because P (Q) = a� bQ :

@�V2(�p2)

@�p
= qA + �p2

@qA
@�p

+ P (Q)
@qN
@�p

� b qN
@Q

@�p
(84)

where qA, qN , andQ are as speci�ed in Lemma A2, evaluated at �p = �p2. Because �p2 = P (Q),
(84) implies:

@�V2(�p2)

@�p
= qA + �p2

�
@qA
@�p

+
@qN
@�p

�
� b qN

@Q

@�p
: (85)

(30) implies:

�p2 =
�
b+ kR

�
QR + cN + kN qN � b qA = kR qA +

�
b+ kN + k

R
�
qN + cN . (86)

(85) and (86) imply:

@�V2(�p2)

@�p
= qA +

�
kR qA +

�
kN + k

R
�
qN + cN

� � @qA
@�p

+
@qN
@�p

�
� b qN

@q

@�p
> 0 . (87)

The inequality holds here because @qA
@�p
+ @qN

@�p
= @QR

@�p
> 0 (from (16)) and @q

@�p
< 0 (from

(17)). �

Proof of Lemma 5. As in (59), de�ne:eS2( �p ) � a Q2( �p )�
b

2
Q2( �p )

2 � qA2(�p ) �p� [ q2( �p ) + qN2( �p ) ] P (Q2( �p ) ) (88)

where qA2(�p ), qN2(�p ), q2(�p ), and Q2(�p ) are as de�ned in (14), (15), (17), and (18), respec-
tively. Observe that eS2(�p ) = S(�p ) for �p 2 [ �p1; �p2 ].

(88) implies that because P (Q2) = a� bQ2 and Q2 = qA2 + qN2 + q2 :

@ eS2( �p )
@�p

= [P (Q2)� �p ]
@qA2
@�p

+ b
@Q2
@�p

[ qN2 + q2 ]� qA2 (89)
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) @2 eS2( �p )
@ (�p )2

=

�
� b @Q2

@�p
� 1

�
@qA2
@�p

+ b
@Q2
@�p

�
@qN2
@�p

+
@q2
@�p

�
� @qA2

@�p
< 0 . (90)

The inequality in (90) holds because Lemma 3 implies that @qA2
@�p

> 0, @Q2
@�p

> 0, @qN2
@�p

< 0,

and @q2
@�p
< 0.

�pS2M � argmax
�p

f eS2(�p )g is unique and is determined by:
@ eS2(�pS2M)

@�p
� @ eS2(�p )

@�p

�����
�p= �pS2M

= 0 . (91)

This is the case because (2), (14) �(18), and (89) imply that @
eS2(�p)
@�p

is a linear function of �p.

Therefore, eS2(�p ) is a quadratic function of �p. Consequently, (90) implies that eS2(�p ) has a
unique maximum that is determined by (91).

To prove that �pS2M > �pV2m, de�ne H(�p ) � aQ2 � b
2
Q22 � [ a� bQ2 ] q2. Observe that:

@H(�p )

@�p
� [ a� bQ2 ]

@Q2
@�p

� [ a� bQ2 ]
@q2
@�p

+ b
@Q2
@�p

q2 (92)

) @2H(�p )

(@�p )2
� � b

�
@Q2
@�p

�2
+ 2 b

@Q2
@�p

@q2
@�p

< 0 , (93)

where q2 and Q2 are de�ned in (17) and (18). The inequality in (93) holds because
@Q2
@�p
> 0

and @q2
@�p
< 0, from (17) and (18). (92) implies:

@H(�p2)

@�p
� @H(�p )

@�p

����
�p= �p2

= �p2
@Q2
@�p

� �p2
@q2
@�p

+ b
@Q2
@�p

q2(�p2) > 0 . (94)

The inequality in (94) holds because @Q2
@�p
> 0 and @q2

@�p
< 0, from (17) and (18). The concavity

of H(�p ) established in (93), along with (94), imply:
@H(�p )

@�p
> 0 for all �p < �p2 ) @H(�pV2m)

@�p
> 0 : (95)

The implication in (95) holds because �pV2m < �p2, from Lemma 4.

(76) and (91) imply:

@ eV2(�pV2m)
@�p

= [ a� bQ2(�) ]
@qN2(�)
@�p

� b @Q2(�)
@�p

qN2(�) + qA2(�) + �pV2m
@qA2(�)
@�p

= 0 (96)

where qA2(�), qN2(�), and Q2(�) are de�ned in (14), (15), and (18), and evaluated at �pV2m.
(89) implies:

@ eS2(�p )
@�p

= [ a� bQ2 ]
@Q2
@�p

� [ a� bQ2 ]
@q2
@�p

+ b
@Q2
@�p

q2

� [ a� bQ2 ]
@qN2
@�p

+ b
@Q2
@�p

qN2 � qA2 � �p
@qA2
@�p

(97)
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where qA2, qN2, q2, and Q2 are de�ned in (14), (15), (17), and (18). (97) implies:

@ eS2(�pV2m)
@�p

= [ a� bQ2(�pV2m) ]
@Q2
@�p

� [ a� bQ2(�pV2m) ]
@q2
@�p

+ b
@Q2
@�p

q2(�pV2m)

=
@H(�pV2m)

@�p
> 0 . (98)

The last equality in (98) re�ects (96). The inequality in (98) re�ects (95).

(90) implies that eS2(�p ) is a strictly concave function of �p. Therefore, �pV2m < �pS2M

because: (i) @ eS2(�pS2M )
@�p

= 0 from (91); and (ii) @ eS2(�pV2m)
@�p

> 0, from (98).

To prove that �pS2M > �p1, it su¢ ces to establish that
@+S2( �p1)

@�p
� @+S2( �p1)

@�p

���
�p= �p1

> 0.

Lemma A1 implies that qA = 0 when �p = �p1. Therefore, (59) implies:

@+ eS2( �p1)
@�p

= [P (Q)� �p1 ]
@qA
@�p

+ b [ qN + q ]
@Q

@�p
> 0 . (99)

The inequality in (99) holds because @qA
@�p

> 0 and @Q
@�p

> 0 from Lemma 3, and because
P (Q) > �p1 when �p 2 ( �p1; �p2). �

Proof of Proposition 6. The �rst conclusion in the Proposition holds because (58) implies
that when if �2 � 0:

@+W2( �p1)

@�p
� @+W2( �p)

@�p

����
�p= �p1

=
@+S2( �p1)

@�p
� d @

+V2( �p1)

@ �p
> 0 . (100)

The inequality in (100) holds because when �2 � 0: (i) @+V2( �p1)
@ �p

< 0 from the proof of

Lemma 4 and its Corollary; and (ii) @
+S2( �p1)
@�p

> 0 from (99).

The second conclusion in the Proposition holds if V ( �p1) < V ( �p ) for all �p > �p1 when d
is su¢ ciently large and �2 < 0. The proof of Lemma 4 and its Corollary establishes that:

@+V (�p)

@�p

����
�p= �p1

> 0 when �2 < 0 : (101)

V (�p ) is a strictly convex function of �p for �p 2 (�p1; �p2), from Lemma 4. Therefore, (101)
implies that V (�p ) is a strictly increasing function of �p for �p 2 [ �p1; �p2 ] under the maintained
conditions. Consequently:

V (�p1) < V (�p ) for all �p 2 (�p1; �p2 ] . (102)

Lemma 2 implies that under the maintained conditions:

V (�p1) < V (�p3) . (103)

(41) implies that V (�p ) is a strictly concave function of �p for �p 2 ( �p2; �p3 ). Therefore,
(102) and (103) imply:
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V (�p ) > V (�p1) for all �p 2 (�p2; �p3 ] : (104)

The conclusion follows from (102), (104), and Proposition 5. �

Proof of Proposition 7. To prove that �p� � pS2M , suppose that �p
� > �pS2M . eS2(�p ) is a

strictly concave function of �p, from Lemma 5. Therefore, because �p� > �pS2M , (91) implies:

@ eS2(�p�)
@�p

<
@ eS2(�pS2M)

@�p
= 0 : (105)

eV2(�p ) is a strictly convex function of �p, from Lemma 4. Therefore, because �pV2m < �pS2M
from Lemma 5 and because �p� > �pS2M by assumption, (78) implies:

@ eV2(�p�)
@�p

>
@ eV2(�pS2M)

@�p
>
@ eV2(�pV2m)

@�p
= 0 . (106)

(105) and (106) imply that R�s revenue declines and consumer surplus increases as �p
declines below �p�. Therefore, �p� is not the welfare-maximizing value of �p. Hence, by contra-
diction, �p� � �pS2M .

To prove that �p� � pV2m, suppose that �p
� < pV2m.

eV2(�p ) is a strictly convex function of
�p, from Lemma 4. Therefore, because �pV2m < �pS2M from Lemma 5, (78) implies:

@ eV2(�p�)
@�p

<
@ eV2(�pV2m)

@�p
= 0 . (107)

eS2(�p ) is a strictly concave function of �p, from Lemma 5. Therefore, because �pV2m < �pS2M
from Lemma 5 and because �p� < �pV2m by assumption, (91) implies:

@ eS2(�p�)
@�p

>
@ eS2(�pV2m)

@�p
>
@ eS2(�pS2M)

@�p
= 0 : (108)

(107) and (108) imply that R�s revenue declines and consumer surplus increases as �p
increases above �p�. Therefore, �p� is not the welfare-maximizing value of �p. Hence, by
contradiction, �p� � pV2m.

To prove conclusion (i) in the Proposition, de�ne fW2(�) � eS2(�) � d eV2(�) and observe
that when pS2M < p2 and d > 0:

@fW2( �p)

@�p

�����
�p= pS2M

= � d
@ eV2(pS2M)

@ �p
< � d

@ eV2(pV2m)
@ �p

= 0 . (109)

The inequality in (109) holds because: (i) pS2M > pV2m, from Lemma 5; and (ii) eV2(�) is a
strictly convex function of p, from Lemma 4. (109) implies that pS2M > p� because fW2(�) is
a strictly concave function of p (because eS2(�) is a strictly concave function of p and eV2(�) is
a strictly convex function of p).

To prove conclusion (ii) in the Proposition, observe that when pV2m > p1:
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@fW2( �p)

@�p

�����
�p= pV2m

=
@ eS2(pV2m)

@�p
>
@ eS2(pS2M)

@�p
= 0 . (110)

The inequality in (109) holds because: (i) pS2M > pV2m, from Lemma 5; and (ii) eS2(�) is a
strictly concave function of p, from Lemma 5. (110) implies that �p� > pV2m because

fW2(�)
is a strictly concave function of p.

Conclusions (iii) and (iv) in the Proposition follow immediately from (58) because p� 2
(p1; p2) is a non-increasing function of d. This is the case because (58) implies that when
�p� 2 (�p1; �p2):

@S(�p�)

@�p
� d @

eV (�p�)
@�p

= 0 ) @2 eS(�p�)
@(�p)2

@�p�

@d
� @

eV (�p�)
@�p

� d @
2eV (�p�)
@(�p)2

@�p�

@d
= 0

) @�p�

@d
=

@ eV (�p�)
@�p

@2 eS(�p�)
@(�p)2

� d @2 eV (�p�)
@(�p)2

=

@ eV (�p�)
@�p

@2fW (�p�)
@(�p)2

s
= � @

eV (�p�)
@�p

. (111)

The last conclusion in (111) holds because Lemmas 4 and 5 imply that @
2fW (�p�)
@(�p)2

< 0.

It remains to prove that @
eV2(�p�)
@�p

� 0. To do so, suppose that @
eV2(�p�)
@�p

< 0. Then:

�p� < �pV2m . (112)

(112) holds because: (i) eV2(�p ) is a strictly convex function of �p, from Lemma 4; and (ii)
@ eV2(�pV2m)

@�p
= 0, from (78). Furthermore, because eS2(�p) is a strictly concave function of �p,

from Lemma 5:
@ eS2(�p )
@�p

> 0 for all �p < �pS2M . (113)

Observe that:
�p� < �pV2m < �pS2M . (114)

The �rst inequality in (114) re�ects (112). The second inequality in (114) re�ects Lemma 5.
(91), (113), and (114) imply:

@ eS2 (�p�)
@�p

> 0 . (115)

Because @ eS2(�p�)
@�p

> 0 (from (115)), @ eV2(�p�)
@�p

< 0 (by assumption), and �p� 2 (�p1; �p2) (by
assumption), consumer surplus increases and R�s revenue declines as �p increases above �p�.

Therefore, �p� cannot be the welfare-maximizing value of �p. Hence, by contradiction, @
eV2(�p�)
@�p

�
0. Consequently, (111) implies that @�p

�

@d
� 0. �

Proof of Lemma 6. The conclusions in the lemma follow directly from Lemma A2. �
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Proof of Proposition 8. (59) implies that consumer surplus is:

S =
b

2
Q2 + [ a� p ] qA � bQ qA . (116)

(116) implies that p� is the solution to:

Maximize
p

W =
b

2
Q2 + [ a� p ] qA � bQ qA � d p qA � d a qN + d bQ qN . (117)

(117) imply that for �p 2 (�p1; �p2):
dW

dp
= 0 , f b [ b+ k ] [ b+ kN ]� b

�
3 b2 + 2 b

�
k + kN + k

R
�
+ k

�
kN + k

R
� �

� d b
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
gQ

� [D + b (b+ k) (b+ kN) + dD ] qA + d b [ b+ k ] [ b+ kN ] qN

� f 3 b2 + 2 b
�
k + kN + k

R
�
+ k

�
kN + k

R
�

+ d
�
3 b2 + 2 b

�
k + kN + k

R
�
+ k

�
kN + k

R
� �
g p

+ f 3 b2 + 2 b
�
k + kN + k

R
�
+ k

�
kN + k

R
�

+ d
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
g a = 0 . (118)

The coe¢ cient on Q in (118) is readily shown to be:

� b [ 2 b2 + b k + b kN + 2 b kR + k kR + b2d+ 2 b d kR + b d k + d k kR ] < 0 . (119)

The coe¢ cient on � qA in (118) is readily shown to be:

[ 1 + d ]
�
[ 2 b+ k ]

�
kN
�
kA + k

R
�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ]

	
+ b [ b+ k ] [ b+ kN ] > 0 . (120)

(118) �(120) imply that if �p� 2 (�p1; �p2), �p� is determined by:

G� g �p� = 0, where (121)

G � d b [ b+ k ] [ b+ kN ] qN

+ f 3 b2 + 2 b
�
k + kN + k

R
�
+ k

�
kN + k

R
�

+ d
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
g a

� b [ 2 b2 + b k + b kN + 2 b kR + k kR + b2d
+ 2 b d kR + b d k + d k kR ]Q

� f [ 1 + d ]D + b [ b+ k ] [ b+ kN ] g qA , and
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g � f 3 b2 + 2 b
�
k + kN + k

R
�
+ k

�
kN + k

R
�

+ d
�
3 b2 + 2 b

�
k + kN + k

R
�
+ k

�
kN + k

R
� �
g > 0 . (122)

To prove that d p�

dcA
> 0, observe from (122) that dg

d p
= 0. Therefore, (121) implies that

for parameter x:

[Gx � �p� gx ] dx+ [Gp � g ] d �p� = 0 ) d p�

dx
=
Gx � p gx
g �Gp

. (123)

(2) and (122) imply that because D > 0:

GcA = d b [ b+ k ] [ b+ kN ]
dqN
dcA

� b [ 2 b2 + b k + b kN + 2 b k
R + k kR + b2d+ 2 b d kR + b d k + d k kR ]

dQ

dcA

� f [ 1 + d ]D + b [ b+ k ] [ b+ kN ] g
dqA
dcA

> 0 . (124)

The inequality in (124) holds because Lemma 6 implies that dqA
dcA

< 0 , dqN
dcA

> 0 , and dQ
dcA

< 0.

(2) and (122) imply:

Gp = d b [ b+ k ] [ b+ kN ]
dqN
dp

� b [ 2 b2 + b k + b kN + 2 b k
R + k kR + b2d+ 2 b d kR + b d k + d k kR ]

dQ

dp

� f [ 1 + d ]D + b [ b+ k ] [ b+ kN ] g
dqA
dp

< 0 . (125)

The inequality in (124) holds because Lemma 3 implies that dqA
d p
> 0, dqN

d p
< 0, and dQ

d p
> 0.

(122) implies:
gcA = 0 . (126)

(122) �(126) imply that d p
�

dcA
=

GcA
g�Gp > 0.

The proofs of the remaining conclusions are similar, and so are omitted. �
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                Figure 1.  Consumer Surplus 𝑺𝑺(𝒑𝒑) and Revenue 𝑽𝑽(𝒑𝒑)  
                        when  𝒑𝒑𝟏𝟏 <  𝒑𝒑𝑽𝑽𝟐𝟐𝒎𝒎 <  𝒑𝒑𝑺𝑺𝟐𝟐𝑴𝑴 <  𝒑𝒑𝟐𝟐 <  𝒑𝒑𝑽𝑽𝟑𝟑𝑴𝑴 . 
  



       
 
 

 
 
 
                         Figure 2.   R’s Revenue 𝑽𝑽(𝒑𝒑) in the Baseline Setting. 
 
 
  



 

 
 
 
                  Figure 3.   Welfare 𝑾𝑾(𝒑𝒑) in the Baseline Setting when 𝒅𝒅 = 𝟏𝟏

𝟐𝟐
 . 
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